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Abstract

This paper presents the submission of the
Linguistics Department of the University
of Colorado at Boulder for the 2017
CoNLL-SIGMORPHON Shared Task on
Universal Morphological Reinflection.
The system is implemented as an RNN
Encoder-Decoder. It is specifically geared
toward a low-resource setting. To this end,
it employs data augmentation for coun-
teracting overfitting and a copy symbol
for processing characters unseen in the
training data. The system is an ensemble
of ten models combined using a weighted
voting scheme. It delivers substantial
improvement in accuracy compared to a
non-neural baseline system in presence of
varying amounts of training data.

1 Introduction

Natural language processing (NLP) for English
is typically word based, that is, words such as
dogs, cat’s and they’ve are treated as atomic units.
In the case of English, this is a viable approach
because lexemes correspond to a handful of in-
flected forms. However, for languages with more
extensive inflectional morphology, the approach
fails because one lexeme can be realized by thou-
sands of distinct word forms in the worst case.
Therefore, NLP systems for languages with ex-
tensive inflectional morphology often need to be
able to generate new inflected word forms based
on known word forms. This is the task of morpho-
logical reinflection.

The traditional approach to word form genera-
tion is rule-based. For example, finite-state tech-
nology has been successfully applied in construct-
ing morphological analyzers and generators for a
large variety of languages (Karttunen and Beesley,

2005). Unfortunately, the rule-based approach is
labor-intensive and therefore costly. Additionally,
coverage can become a problem because systems
need to be continually updated with new lexemes.
For these reasons, machine learning approaches
have recently gained ground.

Results from the 2016 SIGMORPHON Shared
Task on Morphological Reinflection (Cotterell
et al., 2016) indicate that models based on recur-
rent neural networks can deliver high accuracies
for reinflection. The winning system by Kann
and Schütze (2016) achieved an average accuracy
in excess of 95% when tested on 10 languages.1

Based on these results, morphological reinflection
could be considered a solved problem. However,
the 2016 shared task employed training sets of
more than 10,000 word forms for most languages.
In a setting with less training data, the reinflec-
tion task becomes much more challenging. In an
extreme low-resource setting of 100 training ex-
amples, a standard RNN Encoder-Decoder system
like the one used by Kann and Schütze (2016) will
typically perform quite poorly.2

This paper documents the submission of the
CU Boulder Linguistics Department for the 2017
CoNLL-SIGMORPHON Shared Task on Univer-
sal Morphological Reinflection. The task cov-
ers 52 languages from different language families
with a wide geographical distribution. The task
evaluates systems trained on varying amounts of
data ranging from 100 to more than 10,000 train-
ing examples.

Our system is an RNN Encoder-Decoder (Cho
et al., 2014) specifically geared toward a low-
resource setting. The system closely resembles the

1For inflecting lemmas according to a given morphologi-
cal feature set.

2According to experiments performed by the authors, the
system employed by Kann and Schütze (2016) delivered ac-
curacies between 0% and 1% for most languages in the shared
tasks when using 100 training examples.



system introduced by Kann and Schütze (2016).
However, the novelty of our approach lies in the
training procedure. We augment the training data
with generated training examples. This is a com-
monly used technique in image processing but it
has been employed to a lesser degree in NLP. Data
augmentation counteracts overfitting and allows us
to learn reinflection systems using small training
sets.

We employ an ensemble of 10 models under a
weighted voting scheme. We also implement a
mechanism, the copy symbol, which allows the
system to copy unseen characters from an input
lemma to the resulting word form. This improves
accuracy for small training sets. Unfortunately,
due to time constraints, we were only able to use
the copy symbol in Task 2 of the shared task.

For Task 1 of the shared task, we achieve sub-
stantial improvements over a non-neural baseline
(Cotterell et al., 2017), even in the low resource
setting.

The paper is organized as follows: Section 2
presents related work on morphological reinflec-
tion and data augmentation for natural language
processing. In Section 3, we describe the shared
task and associated data sets. We provide a de-
tailed description of our system in Section 4 and
present experiments and results in Section 5. Fi-
nally, we provide a discussion of results and con-
clusions in Section 6.

2 Related Work

Several existing approaches to morphological re-
inflection are based on traditional structured pre-
diction models. For example, Liu and Mao (2016)
and King (2016) use Conditional Random Fields
(CRF) and Alegria and Etxeberria (2016) and
Nicolai et al. (2016) employ different phoneme-to-
grapheme translation systems. Other approaches
include learning a morphological analyzer from
training data and applying it to reinflect test ex-
amples (Taji et al., 2016) and extracting morpho-
logical paradigms from the training data which are
then applied on test words (Ahlberg et al., 2015;
Sorokin, 2016). The results of the 2016 SIGMOR-
PHON Shared Task on Morphological Reinflec-
tion indicate that none of these approaches can
compete with deep learning models. The deep
learning systems outperformed all other systems
by a wide margin.

The three best performing teams (Kann and

Schütze, 2016; Aharoni et al., 2016; Östling,
2016) in the 2016 SIGMORPHON shared task
employed deep learning approaches based on the
RNN Encoder-Decoder framework proposed by
Cho et al. (2014) and later used for machine trans-
lation by Bahdanau et al. (2014). This family
of models is intuitively appealing for morpho-
logical reinflection because of the obvious paral-
lels between the reinflection and translation tasks.
The success of the winning system by Kann and
Schütze (2016) highlights the importance of an ad-
ditional attention mechanism introduced by Bah-
danau et al. (2014).

Although the RNN Encoder-Decoder frame-
work has proven to be highly successful in mor-
phological reinflection, an out-of-the-box RNN
Encoder-Decoder system performs poorly in pres-
ence of small training sets due to overfitting. To
alleviate this problem, we employ data augmenta-
tion, that is, augmentation of the training set with
artificial, generated, training examples. The tech-
nique is well known in the field of image pro-
cessing (Krizhevsky et al., 2012; Chatfield et al.,
2014). Even though the technique is used less fre-
quently in NLP, a number of notable approaches
do exist. Sennrich et al. (2016) use monolingual
target language data to improve the performance
of an Encoder-Decoder translation system. They
first train a translation system from the target lan-
guage to the source language, which is used to
back-translate target language sentences to source
language sentences. The sentence pairs consisting
of a translated source sentence and a genuine tar-
get sentence are then added to the training data.
Other approaches to data augmentation in NLP in-
clude substitution of words by synonyms (Fadaee
et al., 2017; Zhang and LeCun, 2015) and para-
phrasing.

3 Task Description and Data

The shared task consists of two subtasks: (1)
generation of word-forms based on a lemma and
a set of morphological features (for example,
dog+N+Pl → dogs), and (2) completion of mor-
phological paradigms given a small number of
known forms (see Figure 1).

Systems are evaluated on 52 languages.3

3Albanian, Arabic, Armenian, Basque, Bengali, Bokmal,
Bulgarian, Catalan, Czech, Danish, Dutch, English, Esto-
nian, Faroese, Finnish, French, Georgian, German, Haida,
Hebrew, Hindi, Hungarian, Icelandic, Irish, Italian, Khaling,
Kurmanji, Latin, Latvian, Lithuanian, Lower Sorbian, Mace-



For both subtasks and all languages, there are
three data settings, which differ with respect to the
size of available training data: low, medium, and
high. In Task 1, these span 100, 1,000 and 10,000
examples respectively. However, there is no train-
ing set for the high setting for Gaelic. In Task
2, there are 10 example paradigms in the low set-
ting. Most languages have 50 example paradigms
in the medium setting (Basque has 16, Haida 21
and Gaelic 23). In the high settings, most lan-
guages have 200 example paradigms (Bengali has
86, Urdu 123 and Welsh 133). There is no training
set for the high setting in Task 2 for Basque, Haida
and Gaelic. All settings use the same development
and test sets. Further details concerning the shared
task and languages can be found in Cotterell et al.
(2017).

lock – V V.PTCP PRS
lock – V 3 SG PRS
lock – V V.PTCP PST
lock lock V NFIN
lock – V PST

Figure 1: Illustration of Task 2 – the paradigm completion
task. The system will fill in missing forms based on the
lemma, morphological features and the known word forms.

4 System Description

Our system is an RNN Encoder-Decoder network
heavily influenced by Kann and Schütze (2016).
The key difference is that our system is trained
using augmented data, which substantially im-
proves accuracy given small training sets. We
train several models and employ a weighted vot-
ing scheme, which improves results upon a base-
line majority voting system. Additionally, we use
copy symbols which allow the system to process
lemmas that contain characters that were missing
in the training data.

4.1 RNN Encoder-Decoder with Attention

We use an RNN Encoder-Decoder model with at-
tention proposed by Bahdanau et al. (2014) for
machine translation, which was later applied to
morphological reinflection by Kann and Schütze
(2016). The architecture of our model differs from

donian, Navajo, Northern Sami, Nynorsk, Persian, Polish,
Portuguese, Quechua, Romanian, Russian, Gaelic, Serbo-
Croatian, Slovak, Slovene, Sorani, Spanish, Swedish, Turk-
ish, Ukrainian, Urdu, and Welsh.
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Figure 2: The RNN Encoder-Decoder for morphological re-
inflection. The system takes a lemma and associated tags as
input and produces an output form.

the model proposed by Kann and Schütze (2016)
only with regard to minor details.

The high-level intuition of the system is con-
veyed by Figure 2. The system takes a sequence of
lemma characters and morphological features as
input (for examples d, o, g, N, PL) and produces a
sequence of word form characters as output (d, o,
g, s). It incorporates two encoder LSTMs, which
operate on embeddings of input characters and
morphological features. One of the encoders con-
sumes the input lemma and features from left to
right and the other one consumes them from right
to left. This results in two sequences of state vec-
tors, which are translated into a sequence of output
characters by a decoder LSTM with an attention
mechanism.

More specifically, our system first computes
character embeddings e(·) for input characters and
features. These embeddings are then encoded into
forward state vectors fi and backward state vec-
tors bi by a bidirectional LSTM (a combination
of a forward and backward LSTM). Each forward
and backward state pair ei = (fi,bi) is used as
the bidirectional LSTM state at position i. Subse-
quently, a decoder LSTM generates a sequence of
embeddings which is then transformed into out-
put characters by a softmax layer. At each state



during decoding, the current state vector of the de-
coder is computed based on (1) the previous de-
coder state, (2) the previous output embedding,
and (3) all encoder states (fi,bi). The simulta-
neous use of all encoder states is realized by an
attention mechanism A which computes a weight
wi,j−1 for each encoder state ei given the previous
decoder state fj−1. These weights are then normal-
ized into weighting factors εi,j−1 using softmax,
that is εi,j−1 = exp(wi,j−1)/

∑n
i=1 exp(wi,j−1).

The next decoder state fj is then determined based
on the previous decoder state fj−1, the previous
output embedding and a weighted average of all
encoder states A(fj−1, e1, ..., en) given in Equa-
tion 1.

A(fj−1, e1, ..., en) =
n∑

i=0

εi,j−1ei (1)

The attention mechanism A is implemented as
a feed-forward neural network with one hidden
layer and hyperbolic tangent non-linearity (tanh).

For the encoders and the decoder, we use 2-
layer LSTMs (Hermans and Schrauwen, 2013)
with peephole connections (Gers and Schmidhu-
ber, 2000) and coupled input and forget gates
(Greff et al., 2015). We train our system using
Stochastic Gradient Descent. Our system is im-
plemented using the Dynet toolkit (Neubig et al.,
2017)4 and our code is freely available.5

There are three hyper-parameters in our system:
the character embedding dimension, the size of the
hidden layer of the LSTM models and the size of
the hidden layer of the attention network. We set
these to 32 for most languages but use 100 for a
number of languages, as explained in Section 5.

4.2 Data Augmentation

In order to counteract overfitting caused by data
sparsity in the low and medium data settings of
the shared task, we use data augmentation. That is,
we generate new training examples from existing
training examples.

Our data augmentation technique is based on
the observation that in most cases word forms
can be split into three parts: an inflectional pre-
fix, a word stem and an inflectional suffix. For
example, the English word fizzling can be split
into 0+fizzl+ing. In many cases, as in the case

4http://dynet.readthedocs.io/en/
latest/index.html

5https://github.com/mpsilfve/conll2017

of the lemma fizzle and word form fizzling, the
stem is shared between the lemma and word
form. By replacing it, in both the lemma and
word form, with another string, we can pro-
duce a new training example from an existing
one. For instance, we can produce a new exam-
ple (sfkekgivlofe+V+PRS+PCP, sfkekgivlofing)
from (fizzle+V+PRS+PCP, fizzling) by replacing
fizzl with sfkekgivlof.

Data augmentation requires that we can iden-
tify word stems. We approximate this by identi-
fying the longest common continuous substring of
the word form and lemma. This strategy can be
expected to work well for languages with largely
concatenative morphology. In languages with ex-
tensive stem changes or stem allomorphy, it can,
however, fail.

We experimented with two different techniques
for generating new stems:

• Draw each character from a uniform distribu-
tion over the set of characters occurring in the
training file.

• First, train a language model on the train-
ing data. Then, use a sampling-based
method to identify a likely character se-
quence c1, ..., cm based on the probabil-
ity given by the language model to the
string p1...plc1...cms1...sn, where p1...pl and
s1...sl are the inflectional prefix and suffix re-
spectively.

We experimented with two different language
models—a simple trigram based model with addi-
tive smoothing and a 5-gram model with Witten-
Bell smoothing (Witten and Bell, 1991).

The augmented training data generated using
the language models seems to be phonotactically
superior to the data generated by the uniform dis-
tribution over all characters. However, surpris-
ingly, it fails to produce comparable accuracy.
Therefore, we only report results for the strings
drawn from the uniform distribution.

4.3 Voting
For each language and setting, we train an ensem-
ble of ten models. The most straightforward way
of utilizing such an ensemble is majority voting
which is employed by Kann and Schütze (2016).
In majority voting, the output candidate which was
generated by the greatest number of models is the
final output of the ensemble. In contrast to Kann

http://dynet.readthedocs.io/en/latest/index.html
http://dynet.readthedocs.io/en/latest/index.html
https://github.com/mpsilfve/conll2017


and Schütze (2016), we apply a weighted voting
scheme to the model ensemble.

In weighted voting, each model receives a
weight wi ∈ [0, 1]. It then uses this weight to vote
for the output candidate that it generated. Let Sj
be the set of models that generated output candi-
date cj . Then the total weight Wj of candidate cj
is given by Equation 2. The candidate with the
highest total weight is the output of the ensem-
ble. It is easy to see that setting all model weights
wi = 1/10 gives regular majority voting.

Wj =
∑
i∈Sj

wi (2)

We tune model weights using Gibbs sampling in
order to attain improved accuracy. Gibbs sampling
is implemented as a function which iteratively ad-
justs the weight distribution {w1...w10} in order
to find weights that result in improved accuracy
on the development set. Each adjustment is made
by moving some probably mass of size α from
a randomly selected weight wi onto another ran-
domly selected weight wj as illustrated in Figure
3.6 The new weight distribution is then accepted
or rejected based on the resulting development set
accuracy. We initialize the weights using an even
distribution, where wi = 1/10.

The development set accuracy a2 of the ad-
justed weight distribution is checked against the
development set accuracy a1 of the previous dis-
tribution, and the adjusted distribution is accepted
with a probability proportional to a2/a1. This
draws upon the intuition of Gibbs Sampling that
an inferior configuration is sometimes accepted in
order to account for the non-convex nature of the
objective function.

After Gibbs sampling completes, the weight
distribution attaining maximal development set ac-
curacy wmax = {w1...w10} is returned.

4.4 The Copy Symbol

The decoder of an RNN Encoder-Decoder system
can only emit characters that were observed in the
training data. This is typically a minor problem
when using large training sets because these are
likely to contain all frequent orthographic sym-
bols. However, it can become a severe problem
when the training set is very small. The problem

6We test α values in the set {.001, .01, .05, .1, .2} and run
Gibbs sampling for 10,000 iterations.
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Figure 3: The probability mass is moved from model 4 to
model 7 in order to test a new weight distribution

fizzle+V+Prs+Pcp

@i@@le+V+Prs+Pcp 

@i@@ling

fizzling

substitute

inflect

revert

Figure 4: Substitution of unknown characters with copy sym-
bols (@), inflection, and subsequent reversion. In this exam-
ple, the characters f and z are missing from the training data.

can have a surprisingly large effect on overall ac-
curacy because reinflection will often fail when
even one of the characters in the lemma is un-
known to the system.

In order to solve the problem of missing char-
acters, we use a special copy symbol. During test
time, unknown symbols are substituted by copy
symbols and reinflection is performed. After re-
inflection, each copy symbol is reverted back to
the original unknown symbol as shown in Figure
4. Reversion is performed by substituting the ith
copy symbol in the output string with the ith un-
known symbol in the lemma. If extra copy sym-
bols remain after reversion, they are replaced with
the empty string.

Generated stems with copy symbols are added
to the training data during data augmentation. This
allows the system to learn to copy the symbols
from the input lemma to the output word form.

5 Experiments and Results

For Task 1, we train ten models for each language
and setting. We then apply weighted voting as ex-
plained in Section 4. For most languages, a hidden



layer size, embeddings size, and attention layer
size of 32 gave reasonable results. For 11 lan-
guages, Faroese, French, German, Haida, Hun-
garian, Icelandic, Latin, Lithuanian, Navajo,
Bokmal, and Nynorsk, we found 32 insufficient,
and set hidden layer size, embedding size and at-
tention layer size to 100 instead. Setting the layer
size to 100 might improve results for other lan-
guages as well. Unfortunately, we did not have
enough time to test this.

Data augmentation is used in order to improve
accuracy in the low and medium training data set-
tings for Task 1. In the low setting, we add 4900
augmented training examples to the training set,
and in the medium data setting, we add 9900 aug-
mented training examples. Given that the original
low training data spans 100 and the medium train-
ing data spans 1000 examples, this means that the
original training data accounts for 2% of the aug-
mented low training set and 10% of the augmented
medium training set.

For Task 2, we also use augmented data. In the
low setting, we add augmented data until the total
size of the training set is 20,000 examples. In the
medium and high settings, we add augmented ex-
amples until the size of the training set is 25,000.
Time constraints prohibited us from using more
generated data.

Because of the large variance of the sizes of
training sets in Task 2 (for example the low Basque
training data spans 4,750 examples, whereas the
low English training data spans 50 examples),
some languages use substantially more augmented
data than other languages. In the high setting,
some languages, in fact, draw upon no augmented
data at all due to the large size of the training set.

For Task 2, we use the copy symbol as ex-
plained in Section 4. This would probably have
resulted in improved accuracy for Task 1 as well.
Unfortunately, we were unable to run experiments
using the copy symbol for Task 1 because of time
constraints.

The test results for Task 1 and Task 2 are shown
in Table 1. For Task 1, the RNN system achieves
average accuracy 45.74% for the low settings,
77.60% for the medium setting and 92.97% for
the high setting. All of these figures are substan-
tially greater than the baseline accuracies which
are 37.90%, 64.70% and 77.81% for the different
settings, respectively.

The RNN system fails to achieve the base-

line accuracy for eight languages in the low set-
tings: Dutch (51.90% versus 53.60%), Haida
(24.00% versus 32.00%), Hungarian (16.00% ver-
sus 21.00%), Kurmanji (79.50% versus 82.80%),
Latvian (62.60% versus 64.20%), Lithuanian
(19.80% versus 23.30%), Navajo (11.70% versus
19.00%) and Romanian (43.10% versus 44.80%).
Additionally, there is one language in the medium
setting where the RNN does not achieve the base-
line, namely Danish (76.70% versus 78.10%) and
another one in the high setting, namely Quechua
(90.30 versus 95.40).

For Task2, the RNN system fails to achieve the
baseline accuracy for most languages and settings.

6 Discussion and Conclusions

The experiments clearly demonstrate that the sys-
tem presented in this paper delivers substantial im-
provements in accuracy over a non-neural baseline
for most of the 52 languages in the shared task and
in all data settings in Task 1. Due to data augmen-
tation, it improves upon the baseline even in the
extreme low resource setting of a mere 100 train-
ing examples. In this setting, a conventional RNN
system will overfit the training data and, conse-
quently, generalize poorly. Indeed, we found it im-
possible to train models for the low training data
setting without using data augmentation (all mod-
els delivered accuracies in the range 0-1%). In
Task 1, we did not apply copy symbols due to time
constraints. We estimate that this reduces accuracy
for the low setting by about 2%.

Even though our system achieves substantial
improvements over baseline in Task 1, there are
several languages which do not reach the perfor-
mance of the baseline system in Task 2. One
possible cause for this is overfitting due to in-
sufficient variation in the training set. A single
lemma occurs multiple times in the Task 2 training
data sets because training examples form complete
paradigms, which contain dozens (or even hun-
dreds) of word forms. Additionally, the number
of unique lemmas in Task 2 training sets is sub-
stantially lower than the number of unique lem-
mas in Task 1 training sets of the same setting.
For example, the low setting Task 1 training data
for Finnish contains 100 unique lemmas, whereas
the Task 2 data set only contains 10 unique lem-
mas. Finally, time constraints prevented us from
training a model ensemble for Task 2. This would
probably have improved accuracy for several lan-



TASK 1 TASK 2
Low Medium High Low Medium High

RNN Baseline RNN Baseline RNN Baseline RNN Baseline RNN Baseline RNN Baseline
Albanian 31.00 21.10 89.40 66.30 97.60 78.90 12.19 12.69 82.17 83.87 86.36 89.46
Arabic 29.50 21.80 73.60 42.10 90.40 50.70 48.78 42.85 63.01 54.34 75.54 55.67

Armenian 51.30 35.80 87.50 72.70 96.30 87.20 75.47 76.18 86.57 80.89 92.04 86.11
Basque 4.00 2.00 66.00 2.00 100.00 5.00 1.54 0.46 7.35 4.40 - -
Bengali 60.00 50.00 95.00 76.00 99.00 81.00 73.38 77.20 19.75 85.86 21.02 87.52

Bulgarian 57.10 30.20 79.90 72.80 97.40 88.80 35.51 33.50 49.25 49.58 78.39 74.37
Catalan 66.40 55.90 89.50 84.30 97.60 95.50 90.06 94.16 79.69 95.33 90.06 96.03
Czech 41.90 39.30 86.30 81.50 92.40 89.60 16.39 26.56 46.68 56.12 68.36 85.79
Danish 68.90 58.40 76.70 78.10 90.50 87.80 53.11 41.31 64.92 71.15 71.48 75.41
Dutch 51.90 53.60 74.70 73.20 95.60 87.00 45.57 50.18 60.33 67.71 73.06 78.04

English 87.80 80.60 91.60 90.90 95.60 94.70 84.40 76.40 81.60 84.00 84.00 91.60
Estonian 32.20 21.50 74.00 62.90 97.10 78.00 50.17 39.81 61.76 60.71 78.29 77.07
Faroese 41.20 30.00 64.60 60.60 85.40 74.10 46.79 49.78 53.21 59.19 65.62 70.10
Finnish 15.80 15.40 67.20 43.70 93.80 78.20 54.58 60.82 57.14 63.30 68.78 68.18
French 63.00 61.80 77.80 72.50 88.20 81.50 84.10 87.09 85.67 85.16 89.48 92.63

Georgian 81.80 70.50 92.50 92.00 95.40 93.80 78.86 78.86 81.00 82.42 89.31 90.38
German 56.60 54.30 74.60 72.10 89.70 82.40 68.28 69.83 68.47 70.41 75.82 76.40
Haida 24.00 32.00 68.00 56.00 80.00 67.00 45.85 47.15 59.63 64.53 - -

Hebrew 35.40 24.70 77.80 37.50 98.50 54.00 28.83 33.27 54.89 42.70 70.46 54.09
Hindi 65.30 29.10 93.30 85.90 100.00 93.50 63.62 64.49 61.79 71.11 9.15 96.82

Hungarian 16.00 21.00 56.20 42.30 86.40 68.50 11.56 17.91 39.68 45.73 54.95 53.97
Icelandic 40.80 30.30 67.10 60.40 89.10 76.30 51.40 45.79 56.57 54.51 63.22 67.36

Irish 31.30 30.30 57.00 44.00 88.70 53.00 26.46 35.95 44.34 40.33 53.28 47.99
Italian 56.40 41.10 85.90 71.60 97.00 76.90 58.29 66.95 77.62 71.86 89.86 73.05

Khaling 10.20 3.10 82.90 17.90 98.90 53.70 39.16 42.30 7.53 58.20 89.64 79.08
Kurmanji 79.50 82.80 91.10 89.10 94.40 93.00 65.04 78.43 87.48 88.35 93.74 93.39

Latin 19.30 16.00 46.10 37.60 80.50 47.60 22.55 24.45 38.07 39.53 50.51 47.58
Latvian 62.60 64.20 86.00 85.70 94.60 92.10 74.78 68.88 81.99 79.97 88.47 86.46

Lithuanian 19.80 23.30 58.40 52.20 92.90 64.20 28.19 38.27 61.73 65.92 64.14 60.57
Lower Sorbian 52.30 33.80 83.60 70.80 95.40 86.40 27.22 38.20 71.16 65.92 80.15 82.27

Macedonian 59.60 52.10 90.40 83.60 95.20 92.10 14.74 42.49 83.12 86.41 92.56 89.70
Navajo 11.70 19.00 40.50 33.50 83.10 37.80 19.73 0.00 32.60 0.00 46.30 0.00

Northern Sami 18.70 16.20 57.00 37.00 96.10 64.00 15.32 15.62 27.93 31.43 54.61 45.68
Norwegian Bokmal 73.80 67.80 80.80 80.70 91.50 91.00 49.06 41.51 57.23 50.94 70.44 67.92
Norwegian Nynorsk 50.50 49.60 62.50 61.10 87.50 76.90 39.88 42.33 56.44 60.74 60.74 64.42

Persian 38.30 24.50 86.10 62.30 99.50 79.00 84.69 73.42 94.47 78.29 25.09 76.44
Polish 43.70 41.30 78.00 74.00 90.90 88.00 55.19 56.72 79.77 80.28 83.10 90.27

Portuguese 68.40 63.60 94.70 93.40 99.30 98.10 89.94 91.71 92.10 95.29 36.23 96.19
Quechua 30.60 16.40 88.20 70.30 90.30 95.40 79.84 91.33 0.04 91.34 64.45 89.13

Romanian 43.10 44.80 77.40 69.40 85.50 79.80 10.36 14.20 60.80 61.54 75.00 78.99
Russian 45.90 45.60 81.90 75.90 90.80 85.70 36.66 40.18 82.21 82.98 87.42 85.58

Scottish Gaelic 56.00 44.00 74.00 48.00 - - 29.96 44.13 44.53 41.30 - -
Serbo-Croatian 39.20 18.40 83.30 64.50 92.10 84.60 27.90 30.07 36.59 36.84 74.40 77.66

Slovak 46.70 42.40 78.00 72.30 89.30 83.30 38.86 44.39 59.00 59.89 68.27 69.16
Slovene 60.20 49.00 86.30 82.20 95.80 88.90 52.15 57.74 69.15 67.87 77.18 76.48
Sorani 27.10 19.30 71.50 51.70 89.10 63.60 43.53 54.78 67.96 68.30 8.88 72.27

Spanish 63.60 57.10 89.50 84.70 96.80 90.70 79.58 79.75 86.53 92.18 34.63 93.58
Swedish 60.40 54.20 76.30 75.70 87.60 85.40 31.47 43.53 59.41 57.35 70.29 78.24
Turkish 19.70 14.10 66.60 32.90 96.40 72.60 34.89 20.93 76.05 73.26 31.08 85.05

Ukrainian 50.40 43.90 79.70 72.80 90.20 85.40 32.38 43.97 65.71 67.14 72.54 73.97
Urdu 64.60 31.70 96.10 87.50 98.30 96.50 79.56 80.59 67.23 81.02 90.79 95.33
Welsh 53.00 22.00 82.00 56.00 98.00 69.00 82.72 51.67 79.05 82.80 81.66 85.25
AVG 45.74 37.90 77.60 64.70 92.97 77.81 47.90 49.63 60.94 65.20 65.11 73.11

Table 1: Results from Task 1 and Task 2. RNN refers to the RNN Encoder-Decoder with data augmentation and weighted
voting presented in Section 4. Baseline refers to the non-neural baseline system presented in Cotterell et al. (2017). RNN
accuracies which are greater than the baseline accuracy are shown in boldface.



guages.
The overall performance in Task 1 varies greatly

between languages especially in the low and
medium data settings. For example, the accuracy
for Basque in the low setting is 4.00%, whereas
the accuracy for Danish is 68.90%. One explain-
ing factor may be the number of distinct morpho-
logical feature sets in the test data.

We found that there is a link between low ac-
curacy and the number of distinct morphological
feature sets occurring in the test data in the low
training data setting, as is shown in Figure 5. A
larger number of distinct feature sets correlates
with lower accuracy. No such trend exists for the
high or medium setting. This can partly be ex-
plained by the number of unseen morphological
feature sets.

In languages with many different morphologi-
cal feature sets, the test data may contain a large
amount of morphological feature sets which were
unseen in the low training data spanning 100 ex-
amples. This seems to adversely impact accu-
racy even though the Encoder LSTM does not treat
morphological feature sets as atomic units (for ex-
ample ”V;PRS;PCP”) but instead splits them into
separate symbols (”V”, ”PRS”, ”PCP”). This
conclusion is supported by the results for Basque:
for the low setting, the system achieves accuracy
4%, whereas it achieves accuracy 100% for the
high training data setting. A mere 8% of the mor-
phological feature sets in the Basque test data oc-
cur in the low training data of 100 examples. How-
ever, 99% of them occur in the high training data
containing 10,000 examples.

The present work employs a very naı̈ve form of
data augmentation. A new training example is cre-
ated from an existing one by replacing the longest
common substring of the stem and word form with
a sequence of random characters from the train-
ing data. We also tried to use more sophisticated
language models for generating the examples. In-
terestingly, this failed to bring improvements. In
fact, it resulted in reduced performance. This may
be due to overfitting because the generated strings
too closely resemble existing training examples.

For eight languages (Dutch, Haida, Hungarian,
Kurmanji, Latvian, Lithuanian, Navajo and Roma-
nian), the RNN system failed to reach the baseline
in the low training data setting. Except for Haida
and Navajo, the difference between the baseline
and the RNN system is, quite small (≤ 5%). The

Figure 5: Low accuracy on the dev data (for the low setting
in Task 1) trends downwards as the number of unique MSD
combinations in a language’s dev data increases. The red re-
gression line shows the slope of this trend, with a 95% confi-
dence interval represented as the translucent shadow around
it.

Haida test set is very small (100 examples). There-
fore, random fluctuations play a big role in the ac-
curacy. For Navajo, the difference of 7.3%-points
is substantial. We conjecture that this happens be-
cause data augmentation is not effective in the case
of Navajo due to the short average length of the
longest common substrings (LCS) of Navajo lem-
mas and word forms. For example, the average
word lengths in the low training data for Navajo
and Danish are nearly the same: 9.9 and 9.6 char-
acters, respectively. However, the average length
of the LCS of lemmas and word forms is a mere
2.9 characters for Navajo but it is 6.7 characters for
Danish. Therefore, generated examples for Navajo
will contain long substrings that occur in the orig-
inal training data which may lead to overfitting.

In conclusion, we have demonstrated that an
RNN Encoder-Decoder system can be applied to
morphological reinflection even in a low resource
setting. We achieve substantial improvements over
a non-neural baseline in Task 1. However, the sys-
tem performs poorly in Task 2 due to overfitting.
Improving performance for Task 2 remains future
work at the present time.
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